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AbstractÐThe eddy interaction model has been used extensively to model particle dispersion in com-
plex turbulent ¯ows. In the model, a particle undergoes a series of interactions with random-velocity
eddies. Interaction times, which determine particle dispersion are in¯uenced by the eddy velocity and
eddy length and time scales. In general, these can all be random. Recent research has shown some of
the shortcomings of the original model, and has suggested improvements be made to ensure that
models account for the crossing trajectories, inertia and continuity e�ects. In this present paper, the
performance of variants of the improved model in predicting dispersion of particles in a simple turbu-
lent ¯ow one investigated. Each variant is given a di�erent combination of eddy length and time distri-
butions. Numerical results are compared with previously published analytical results. It is demonstrated
that the e�ects noted above are allowed for in each of the model combinations considered. # 1998
Elsevier Science Ltd. All rights reserved
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1 . INTRODUCTION

The eddy interaction model (EIM) developed by Gosman and Ioannides (1981) is one of the

simplest and most frequently-used methods for simulation of turbulent particle dispersion. In

the EIM, individual particles undergo a series of interactions with random-velocity ¯uid eddies.

A particle interacts with an individual eddy so long as the particle remains within that eddy and

during each interaction the eddy velocity remains constant. In the original model, the particle

remains within the eddy until either the eddy ``dies'' when the ``eddy lifetime'' te is exceeded, or

the particle ``crosses'' the eddy, for example, when the separation between the particle and the

centre of the eddy exceeds the eddy length le. Particle motions are determined by evaluating the

in¯uence of viscous drag and other forces over the duration of the interaction. On exit from an

eddy, the particle immediately enters another eddy with generally di�erent characteristics.

Eventually, particle phase data are determined by statistical averaging over a large number of

trajectories.

For particle dispersion in homogeneous isotropic and stationary turbulence (HIST), the orig-

inal model of Gosman and Ioannides (1981) would give eddy length and time scales which do

not change from eddy to eddy. More recently, however, randomly-sampled scales have been

used. Kallio and Reeks (1989) used time scales sampled from an exponential probability distri-

bution, while Burnage and Moon (1990) used exponential distributions for both time and length

scales. Wang and Stock (1992) used several di�erent time scale distributions and developed a

general method to ®nd the Lagrangian integral time scale tL for a given distribution. In this

paper, we investigate the performance of four di�erent eddy interaction models with random

length and times scales.

We note here that, traditionally, te has been called the ``eddy lifetime''. Following

Graham (1996b), however, and to avoid confusion later, we call te the ¯uid particle inter-

action time or FPIT. Wang and Stock (1992) showed that the probability distribution cho-

sen for the FPIT determines the Lagrangian ¯uid velocity auto-correlation. Graham and
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James (1996) extended Wang and Stock's method to show that the distribution of the eddy
length le determines an Eulerian spatial velocity correlation. By allowing random time and
length scales in eddy interaction models, it is therefore possible to describe real turbulent
¯ows more accurately, by specifying particular correlation functions or spectral behaviour.
Particular distributions of eddy characteristics might be chosen in order to match exper-
imentally-determined forms for these auto-correlations or, equivalently, to match particular
frequency or wave-number spectra.

Because the FPIT distribution determines the Lagrangian auto-correlation, it also ®xes the
Lagrangian integral time scale tL. Similarly, the distribution of le ®xes the Eulerian longitudinal
length scale LE. Recall that the di�usion coe�cient of ¯uid particles in HIST is u'2tL and the
dispersion of heavy particles settling at a velocity vg under gravity is u'2LE/vg. By ensuring the
correct integral time and length scales, the original model is therefore capable of accounting for
Yudine's (Yudine 1959), crossing trajectories e�ect (CTE).
The original model uses the constraint that eddy/particle interaction times can never exceed

the corresponding interaction times for ¯uid particles. Graham and James showed that,
because of this constraint, ®nite-inertia particles disperse less rapidly in the long term limit
than ¯uid particles. This was shown to be the case whatever the choice of eddy length and
time scales. This property of ``standard'' eddy interaction models is contrary to analytical and
experimental results which show that dispersivity can increase with particle inertia, a phenom-
enon called the inertia e�ect (Reeks 1977, Wells and Stock 1983, Deutsch 1992, Squires and
Eaton 1991).

In order to avoid this problem, Graham (1996a) proposed a modi®ed EIM which has two
di�erent time scales. In the modi®ed model, ®nite-intertia particles are allowed to interact
with eddies for a maximum interaction time tmax, which may be greater than the interaction
time for ¯uid particles (i.e. the FPIT). Graham (1996a) speci®ed a constant maximum inter-
action time tmax=Tmax, whereas in this present paper, tmax can be randomly-sampled. This
method allows for the possibility that the (moving) Eulerian integral time scale tE can be
greater than the Lagrangian integral time scale tL. In this present paper, the method devel-
oped in Graham (1996a) for the case of constant FPIT and constant eddy length is extended
to three other combinations of FPIT and eddy length distributions. This ensures that any of
the the model combinations can predict the enhanced dispersion of high-inertia (but low drift
velocity) particles.

The original EIM also fails to model the ``continuity e�ect'' Csanady (1963), whereby
particle dispersion at right angles to a strong drift velocity is less than the dispersion par-
allel to the drift. The e�ect is due to the di�erence between ``lateral'' and ``longitudinal''
length scales, which is in turn due to the continuity of the ¯uid turbulence. This failure of
the original EIM to predict this e�ect is because it speci®es that interaction times are iden-
tical in all coordinate directions, leading to identical dispersivity in all directions. Graham
(1996b) developed a method to allow for this ``continuity e�ect'' when the FPIT and eddy
length are constant. The method is also used below with the other combinations of FPIT
and eddy length.

Other Lagrangian models are of course available which account for the CTE, inertia and con-
tinuity e�ects. The contributions of Pozorski et al. (1993), Lu et al. (1993), Huang et al. (1993)
and Wang and Stock (1994), for example, include these e�ects. Pozorski et al. (1993) and Lu et
al. (1993) both used methods based upon the Langevin equation (Kloeden and Platen 1995),
while Wang and Stock (1994) used Kraichnan's (Kraichnan 1970) method of random Fourier
modes. More closely related to the present paper is the eddy interaction method developed by
Huang et al. (1993).

There are two main di�erences between Huang's method and the method used in this paper.
Firstly, Huang uses a maximum interaction time which depends on particle intertia. This deter-
mines the relationship between dispersion coe�cients and particle inertial time scale tp when
body forces are absent. It should be noted that Huang's relationship is strictly valid for only
one value of the ``turbulence structure parameter'' b = u'tL/LE (where u' is the turbulence inten-
sity). The method used below is similar to that used in Graham (1996a,b) in which Tmax is inde-
pendent of the particle properties but depends on b. The resulting method is then valid for any
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value of b. The relationship between dispersion coe�cient and particle inertia is then dependent
on the distributions of eddy velocity, length and time scales and on b. The main feature is that
the method is designed to perform properly in the limiting cases where tp40, tp41, whatever
the value of b.

The second main di�erence between Huang's method and the present is the expression
used to evaluate the ``crossing time''. Huang used a simple expression to evaluate these
times, whereas Graham (1996b) used a more complex and costly expression which involved
an iterative method to include the e�ects of gravity. However, it can be shown that
Huang's method under-predicts dispersion of ¯uid particles, especially if the turbulence
structure parameter is not small. Graham ensures that ¯uid particle di�usion is correctly
predicted, whatever the value of b. The method described below uses a method which com-
bines the economy of the method of Huang et al., with Graham's method of ensuring the
correct di�usivity of ¯uid particles. In e�ect both Huang et al. and Graham used constant
eddy length and time scales (that is. these scales were not randomly-sampled). In this
paper, the performance of eddy interaction models with random eddy scales is evaluated. In
addition to the usual random eddy velocity, then, the FPIT te, the maximum interaction
time tmax and the eddy length le are also random. The aim is to account for the CTE,
inertia and continuity e�ects in these variants.

The organisation of the remainder of this paper is as follows. In Section 2, the modi®ed eddy
interaction model is described. Four di�erent combinations of eddy length and time scale distri-
butions used are described and each model is designed to have the same tL and LE. Eulerian
time scales LE are discussed in Section 3 and are shown to depend on the eddy length and time
scale distributions. The relationship between LE and the EIM parameters is therefore shown to
be di�erent for each model combination. In Section 4, the results obtained using each model are
compared with the analytical results of Reeks (1977). Consistency of integral length and time
scales is ensured prior to the computations and it is shown that the results from each model
agree well with the analytical expressions.

2. MODEL SPECIFICATIONS

The purpose of this paper is to investigate the performance of di�erent versions of the eddy
interaction model in modelling particle dispersion in turbulent ¯ows. The performance of the
di�erent models is compared with the analytical solution of Reeks (1977). Reeks' analysis
required several simplifying assumptions, including the following (i) the underlying turbulence is
homogeneous, isotropic and statistically stationary, (ii) particles are spherical and small com-
pared with turbulence scales, (iii) the viscous drag on a particle is given by Stokes' law, and (iv)
lift/spin forces are negligible. In order to compare with Reeks' results, the same assumptions are
made here.

The motion of a high-density spherical particle under the in¯uence of viscous drag and gravi-
tational forces is determined by

dup

dt
� �uf ÿ up�

tp
� g; �1�

where up is the particle velocity and uf is the undisturbed instantaneous ¯uid velocity at the par-
ticle location, tp is the particle relaxation time and g is the acceleration due to gravity. In the
case of the Stokesian drag, where the particle Reynolds number is small, tp is a constant. All
quantities are understood to be dimensionless, having been normalised with respect to following
characteristic scales: time = tL, velocity = u', length = u'tL and acceleration = u'/tL.

In the EIM, the ¯uid velocity is constant during each interaction and [1] can be integrated
analytically to provide updated velocities and positions as a result of each interaction. In order
to complete the integrations, the interaction time ti during which a particle is located within an
eddy must be found.
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For each of the eddy interaction model combinations considered in this paper, the following
scheme is used to determine interaction times:

if �vgRLE=tL� then

ti1 � ti2 � ti3 �
te; if �urtpRle�;
min�tmax;ÿtp loge�1ÿ le=�urtp���; otherwise;

�
if �vg > LE=tL� then
ti1 � min�tmax; le=ur�

ti2 � ti3 �
ti1 ; if (le/urmax);

ti1=2; otherwise.

�
In the above scheme, tij represents the interaction time in the xj-direction, ur represents the mag-
nitude of the relative ¯uid/velocity at the start of an interaction and gravity acts in the x1 direc-
tion. Lower-case variables te, tmax and le are instantaneous values of the FPIT, maximum
interaction time and eddy length, randomly sampled and valid for a single eddy. The possibility
of having di�erent interaction times in directions parallel to gravity (longitudinal) and at right
angles to gravity (lateral) is the modi®cation to the standard model which allows for the conti-
nuity e�ect (see Graham 1996b).

The interaction time used in this present paper is determined using a method similar to that
used in Graham (1996b). The expression used for the crossing time depends on the relationship
between the drift velocity vg=gtp and a characteristic velocity scale LE/tL. If vg<LE/tL, the
same expression as used by Graham (1996b) is used, which again neglects the gravitational in¯u-
ence. In this expression, particles can be ``trapped'' if the stopping distance urtp is less than the
eddy length. Suitable choice of the distribution of te ensures the correct di�usivity of ¯uid par-
ticles, which are always trapped. Suitable choice of the distribution tmax also leads in this case
to the correct dispersivity of high-inertia particles when gravity is negligible.

Graham (1996b) also showed that the use of this expression when vg>LE/tL can lead to over-
predictions of particle dispersivity when the drift velocity is of the order of the turbulence inten-
sity. Graham then used an iterative strategy to determine interaction times when the in¯uence of
gravity on the crossing time was accounted for. Here, however, we note instead that, if
vg>LE/tL, drift is dominant and the particle velocity is relatively unchanged as it crosses an
eddy. In this case, we use the expression of Huang et al. (1993) which estimates the interaction
time as le/ur, where le is the eddy length and ur is the relative velocity at the beginning of the in-
teraction. We therefore avoid using the iterative strategy of Graham (1996b) and the in¯uence
of gravity on the crossing time is not explicitly accounted for. As can be seen in the results sec-
tion, Huang's expression leads to good predictions and has the advantage of being computation-
ally inexpensive compared with the iterative method.

The interaction time is in¯uenced by the FPIT (te), maximum interaction time (tmax) and eddy
length (le), as well as the relative velocity (ur). The performance of eddy interaction models
should therefore be expected to be in¯uenced by di�erent speci®cations for te, tmax and le. This
extent of this in¯uence is investigated here. Each of the four di�erent models considered in this
paper has either (a) constant FPIT and maximum interaction time, or (b) FPIT and maximum
interaction time randomly sampled from an exponential probability distribution. Similarly, each
of the four models has either (i) constant eddy length, or (ii) eddy length sampled from an expo-
nential probability distribution. In principle, it would be possible to have combinations with
constant FPIT but exponentially-distributed Tmax, or vice versa. For the models considered
here, the maximum interaction time follows a similar distribution to that of the FPIT. This
ensures that the models to revert to the corresponding ``standard models'' when the maximum
interaction time is set equal to the FPIT.

2.1. Length distributions

For the constant eddy-length model, the pdf of the eddy length is given by g(le) = d(leÿ2LE),
where d(le) is Dirac's delta function. When the eddy length is distributed exponentially, the pdf
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is g(le) = (1/LE)e
ÿle/LE, if le>0 and is zero otherwise. We recall the expression derived by

Graham and James (1996):

LE �
�1
0

�1
x

�1
y

g�y� dy dx dl�1
0

�1
y

g�y� dy dx
�2�

Both of the model speci®cations therefore lead to integral length scales in the model equal to
LE.

2.2. Time distributions

For the constant-FPIT model, the pdf of the FPIT can be written as f(te) = d(teÿ2tL). The
pdf of the maximum interaction time for this model is f1(tmax) = d(tmaxÿTmax). For the expo-
nentially-distributed FPIT, the pdf is given by f(te) = (1/tL)e

ÿte/tL if te>0 and zero otherwise.
The pdf of the maximum interaction time for this model is thus f1(tmax) = (1/Tmax)e

ÿtmax/Tmax if
tmax>0, and zero otherwise.

Wang and Stock's (Wang and Stock, 1992) analysis gives:

tL �
�1
0

�1
t

�1
t

f �t 0� dt 0 dt dt�1
0

�1
t

f �t 0� dt 0 dt �3�

Both of the FPIT speci®cations therefore lead to Lagrangian integral time-scales in the model
equal to tL. Eulerian integral time-scales are dependent upon the distributions of tmax, le and uf.
Analysis is given below.

3. EULERIAN INTEGRAL TIME-SCALES

Eulerian time-scales are determined by investigating the EIM for the case of ®xed-points (or,
equivalently, particles with in®nite inertia). Clearly, such particles are never ``trapped'' (which
means, interestingly, that tE is determined purely by the distribution of tmax and is independent
of the FPIT distribution). The time taken for the particle to cross an eddy (that is the time
taken for the eddy to sweep over the ®xed point) is

tc � le=uf ; �4�
where le is the eddy length and uf is the magnitude of the ¯uid velocity in the eddy
[ÿtp loge(1ÿ le/(urtp))4 le/ur as tp41 and the particle itself is stationary so that ur=uf!]. In
this case, then the interaction time is always determined by

ti � min�tmax; tc� �5�
Using the analysis of Graham and James (1996), it can be shown that the (moving) Eulerian
Integral time-scale is given by

tE �
�1
0

�1
t

�1
t

f1�t 0�
�1
0

g�le�
� le=t

o
h�uf � duf dle dt 0 dt dt�1

0

�1
t

f1�t 0�
�1
0

g�le�
� le=t

0
h�uf � duf dle dt 0 dt

; �6�

where h(uf) is the pdf of the ¯uid velocity (here assumed to be normally distributed with mean
zero and standard deviation equal to the turbulence intensity u'). The explanation of this ex-
pression is as follows: �le=t

0

h�uf � duf �7�

represents the probability that the crossing time tc=le/uf exceeds t, given that the eddy length is
le. The integral �1

0

g�le�
�le=t
0

h�uf � duf dle �8�
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therefore represents the total probability that the crossing time is greater than t. The term�1
t

f1�t 0� dt 0 �9�

represents the probability that the maximum interaction time is greater than t. For the case of
®xed points, as noted above, the interaction time is equal to the minimum of tc and tmax. The
product

fE�t� �
�1
t

f1�t 0� dt 0
�1
0

g�le�
�le=t
0

2h�uf � duf dle �10�

is therefore the probability that the interaction time exceeds t (assuming that h(uf) is symmetrical
about zero). Graham and James (1996) showed that the auto-correlation of the ¯uid motion fol-
lowing a particle is given by

R
p
f �t� �

�1
t

f�t� dt�1
0

f�t� dt ; �11�

where f(t) is the probability that the interaction time exceeds t. The integral time-scale following
the particle is then

tpf �
�1
0

R
p
f �t� dt: �12�

In the case of a ®xed-point, then, f= fE and tpf=tE, the Eulerian integral time scale, so that

tE �
�1
0

�1
t

fE �t� dt dt�1
0

fE �t� dt
; �13�

which is identical to expression [6] on substituting in the expression for fE(t) given in [10]. For
a given model, tE is therefore dependent on the parameters LE and Tmax. Speci®cally, for model
(a)(i),

tE �

�Tmax

0

�Tmax

t

�2LE=Tmax

0

1������
2p
p eÿu

2
f
=2 duf dt dt�Tmax

0

�2LE=Tmax

0

1������
2p
p eÿu

2
f
=2 duf dt

; �14�

for model (a)(ii),

tE �

�Tmax

0

�Tmax

t

�1
0

1

LE
eÿle=LE

�le=Tmax

0

1������
2p
p eÿu

2
f
=2duf dle dt dt�Tmax

0

�1
0

1

LE
eÿle=LE

�le=Tmax

0

1������
2p
p eÿu

2
f
=2 duf dle dt

: �15�

for model (b)(i),

tE �

�1
0

�1
t

�1
t

1

Tmax
eÿt

0=Tmax

�2LE=t

0

1������
2p
p eÿu

2
f
=2 duf dt

0 dt dt�1
0

�1
t

1

Tmax
eÿt

0=max

�2LE=t

0

1������
2p
p eÿu

2
f
=2 duf dt

0 dt
: �16�

for model (b)(ii),

tE �

�1
0

�1
t

�1
t

1

Tmax
eÿt

0=Tmax

�1
0

1

LE
eÿle=LE

�le=t
0

1������
2p
p eÿu

2
f
=2 duf dle dt

0 dt dt�1
0

�1
t

1

Tmax
eÿt

0=Tmax

�1
0

1

LE
eÿle=LE

�le=t
0

1������
2p
p eÿu

2
f
=2 duf dle dt

0 dt
: �17�
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We recall that all quantities have been non-dimensionalised in the above expressions. In particu-
lar, we note that the dimensionless Eulerian integral length scale LE/(u'tL) is the reciprocal of
the turbulence structure parameter. In the non-dimensional units, the ratio tE/tL therefore
depends on the turbulence structure parameter b and the ratio Tmax/tL. Each of the four di�er-
ent schemes considered here leads to a di�erent tE/tL(b, Tmax/tL) relationship. The relationships
have been evaluated by numerical integration using Mathematica (Wolfram 1991) and are illus-
trated in the form of contour plots in ®gure 1.

For the constant tmax model (a), the Eulerian integral time scale might be expected to be half
of Tmax, in the same way that the Lagrangian integral scale is half of the FPIT for this model.
The Eulerian integral scale might correspondingly be expected to be equal to Tmax for model
(b). In the contour plots, the vertical axis is therefore chosen to represent Tmax/(2tL) for model
(a) and Tmax/tL for model (b). The horizontal axis represents 1/b for all model combinations.

In general, for small b (that is the large eddy lengths) tE approaches Tmax/2 for the constant
tmax case. For larger values of b, however, Tmax must exceed 2tE, due to the in¯uence of the
®nite eddy length. In general, the value of b at which this in¯uence is felt is smaller for the expo-
nentially-distributed eddy length model (a)(ii) than for the constant-length model (a)(i). For the
exponentially distributed tmax, tE approaches the anticipated value of Tmax as b 4 0. The in¯u-
ence of the ®nite eddy length is felt at smaller values of b for model (a)(i), compared with (b)(i).
In general, larger values of Tmax are required if the eddy length is distributed exponentially than
for the constant eddy length case. A similar observation can be made on comparing the expo-
nential and constant tmax models. Overall, the greatest in¯uence of the ®nite eddy length is
observed in model (b)(ii), with exponentially-distributed length and time scales. The eddy length
has least in¯uence for the constant eddy scales of model (a)(i).

Tmax

2τL

Tmax

τL

Tmax

2τL

Tmax

τL

1/β 1/β

1/β 1/β

Figure 1. Contours of Eulerian integral time-scale for all model combinations.
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The importance of Tmax can be seen if we consider Eulerian integral scales given by the ``stan-
dard'' EIM obtained by setting Tmax equal to 2 for model (a) and equal to 1 for model (b). The
resulting values of tE for b = 1, 0.5 and 0.25 are given in table 1. It might naively be anticipated
that each of these models would lead to an Eulerian integral scale equal to the Lagrangian inte-
gral scale. Clearly this is not the case unless the turbulence structure parameter b is small.
However, many Lagrangian models have assumed that b= 1 and this leads to Eulerian integral
time scales which are signi®cantly less than the corresponding Lagrangian scales. For the expo-
nentially-distributed length and time scales in model (b)(ii), tE is only 67% of tL! For the con-
stant length and time scale model (a)(i), tE is 94% of tL. It is clearly possible that this property
of the standard EIM could lead to di�culties in modelling the dispersion of high-inertia par-
ticles, especially if attempting to model a physical system in which tE>tL. It should be pointed
out that speci®cation of Tmax enables us to control the ratio tE/tL, the ratio can also be forced
to be less than 1 if necessary.

Table 2 shows the values of Tmax necessary to give Eulerian integral scales of 0.5, 1 and 1.5
for values of b equal to 1, 0.5 and 0.25. It is again clear that model (a)(i) is the least-a�ected by
the ®nite eddy length, with (b)(ii) being the most highly-in¯uenced. For model (b)(ii), we note
that the required value of Tmax is always signi®cantly greater than the resulting tE. Model (a)(i)
is only in¯uenced by the eddy length if either b is large (that is close to 1) or tE is much greater
than tL (or both!). Table 2 con®rms the claim that that models (a)(ii) and (b)(i) are intermediate
between (a)(i) and (b)(ii).

4 . NUMERICAL RESULTS

The numerical simulations compare the performance of the various EIM schemes with the
analytical solution of Reeks (1977). Here we choose the case b= 0.359, tE/tL=1.4. For this
case, the required values of Tmax/tL are 2.80 [(a),(i)]; 3.16 [(a),(ii)]; 1.51 [(b),(i)]; 1.91 [(b),(ii)]. As
noted above, when either tmax or the eddy length is distributed exponentially, the ratios Tmax/tE
for this fairly small value of b are signi®cantly greater than the anticipated ratios of 2.8 (con-
stant tmax) or 1.4 (exponential tmax). In each simulation, 20,000 computational particles were
used, each starting from rest at t = 0. In this case, particles take time to acquire turbulence.
Particle turbulence was allowed to develop by ensuring su�ciently long computation times
(Graham 1996c).

Figure 2 illustrates comparisons between numerical and analytical results for each model com-
bination, for three di�erent values (0.1, 1 and 10) of g* = g/(u'/tL). The horizontal axis rep-
resents the Stokes number tp/tL and the vertical axis represents a dimensionless dispersion
coe�cient D=D/(u'2tL).

Table 1. Eulerian integral scales for ``standard models''

(a)(i) (a)(ii) (b)(i) (b)(ii)

b = 0.00 1.000 1.000 1.000 1.000
b = 0.25 1.000 0.940 0.989 0.857
b = 0.50 0.995 0.892 0.892 0.773
b = 1.00 0.937 0.820 0.817 0.671

Table 2. Values of Tmax for various B and tE in all model combinations

Model (i) Model (ii)

tE=0.5 tE=1.0 tE=1.5 tE=0.5 tE=1.0 tE=1.5

b= 0.25 1.000 2.000 3.002 1.000 1.034 2.135
Model (a) b= 0.50 1.000 2.011 3.101 1.067 2.271 3.606

b= 1.00 1.006 2.159 3.559 1.135 2.532 4.154
b= 0.25 0.500 1.012 1.562 0.549 1.194 1.929

Model (b) b= 0.50 0.506 1.084 1.788 0.597 1.374 2.314
b = 1.00 0.542 1.313 2.333 0.687 1.717 >3

D. I. GRAHAM342



For each model, the main e�ects are modelled reasonably well. Correct speci®cation of the
eddy length and FPIT distributions ensures that the CTE is well catered for with each model.
The dispersion coe�cient therefore decreases as the drift velocity gtp increases and the predic-
tions of the model are well in line with the analytical solution. For small g, the increased disper-
sivity of high-inertia particles is predicted by all of the models, so that the inertia e�ect is also
allowed for in each of the models, although perhaps not as well by model (b)(ii) as by the other
models. Finally, in agreement with the analytical solution each model predicts that (i) for low
drift velocities, particle dispersion coe�cients are identical in all directions, and (ii) for high
drift velocities, the ``lateral'' dispersion coe�cient (that is at right angles to the drift velocity) is
exactly half of the ``longitudinal'' coe�cient (parallel to the drift). The continuity e�ect is there-
fore accounted for with each model. It is interesting to note that the method of halving inter-
action times in directions perpendicular to the drift velocity is equally as e�ective in modelling
the continuity e�ect when the eddy scales are random as it is when the scales are constant.

In fact, the di�erences in computed dispersion coe�cients between the di�erent models are
slight over the whole range of Stokes numbers. This perhaps indicates that it is the correct speci-
®cation of the integral length and time scales (via le, te and tmax) which is most important in
determining the long-time dispersion characteristics, even for ®nite-inertia particles. Conversely,
di�erences in correlation functions (or, equivalently, wave-number or frequency spectra) are less
important. Short- and medium-time behaviour will be, of course, more susceptible to these
di�erences.

There are, of course, some discrepancies between the numerical and analytical results. All of
the models slightly under-predict the dispersion coe�cients for Stokes numbers around 1 for the
low-gravity case (and the predictions of model (b)(ii), in particular, show a decrease in dis-
persion coe�cient in this region). All of the models appear to slightly over-predict dispersion
for low-to-medium Stokes numbers (0.2±0.5) for the high-gravity case and for Stokes numbers
around 1 for the intermediate-gravity case. It is unlikely that this overprediction can be related
to the method used to determine the interaction times, described in Section 2. The threshold
between the two di�erent expressions used for the interaction time is at a drift velocity equal to
the turbulence intensity, whereas this over-prediction appears to occur if the drift velocity is
between two and ®ve times the turbulence intensity.

Figure 2. Particle dispersion coe�cients vs. particle Stokes number for all model combinations.
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Perfect agreement with the analytical solution should not be expected for any model because
of the di�erences between the velocity auto-correlations in Reeks' solution and in the EIM.
However, agreement in the limiting cases (tp40, tp41, g 4 0 and g41) should be expected.
The indications from the numerical simulations are that this exact agreement would be reached
in the limiting cases. Overall, we conclude that the modi®ed eddy interaction models with ran-
dom time scales considered here successfully account for the CTE, inertia and continuity e�ects.
Good levels of performance are demonstrated for a wide range of particle sizes and drift vel-
ocities. It is also worth noting that each modi®ed EIM used in this paper performs signi®cantly
better than the standard EIM, which is capable of modelling the CTE but not the inertia and
continuity e�ects.

Graham and James (1996) show that an eddy interaction model having a random ¯uid par-
ticle interaction time with mean T can lead to a stationary model of the turbulence only if
T/2 < tL < T (where, as above tL is the Lagrangian integral scale of the model turbulence).
For the exponentially-distributed time scales, tL=T, whereas for the constant time scale model,
tL=T/2. Similar reasoning leads to the inequality L/2 < LE < L, where L is the mean eddy
length. Again, for the exponentially-distributed length scale, LE=L and LE=L/2 for the con-
stant eddy length model. The exponentially-distributed scale and the constant scale models
therefore represent the extremes of the possible eddy interaction models. Because the method
speci®ed in Section 2 works for all combinations of these extreme cases, it can be inferred that
it will work for any combination of eddy length and time scales, so long as the integral length
and time scales are set properly. Of course, new tE(Tmax/tL, b) relationships will be produced
for combinations other than those given here.

In principle, however, this relationship can be determined as here by numerical integration. In
common with any numerical model used to predict particle dispersion, the main problem is to
have good estimates for the integral scales. Determination of length scales appears not to be
problematical and methods based upon Taylor's ``frozen turbulence'' hypothesis can be used
(Bradshaw 1971). It can be more di�cult to measure integral time scales, although experimental
methods capable of measuring tL and tE have recently become available (Beckel et al. 1995).
Additionally, direct numerical simulations can be used to model simple ¯ows (Squires and
Eaton 1991) and all of the integral scales are available from the simulation results. In the mean-
time, values of the integral scales must be estimated from empirical correlations or as functions
of the turbulence kinetic energy k and its rate of dissipation e in kÿ e and other turbulence
models (Graham and James 1996).

5 . CONCLUSIONS

The performance of variants of the eddy interaction model of Gosman and Ioannides (1981)
has been investigated. Each di�erent model has a di�erent combination of randomly-sampled
eddy length and time scales. Each has been designed to account for the crossing trajectories,
inertia and continuity e�ects. We note that

(i) the CTE is accounted for by specifying the correct forms of the eddy length and FPIT distri-
butions;

(ii) by specifying the distribution of Tmax (which depends on the model parameters), the inertia
e�ect is catered for;

(iii) the continuity e�ect is modelled by allowing di�erent interaction times in di�erent coordi-
nate directions.

Numerical results using di�erent models have been compared with the analytical solution of
Reeks (1977). The results from each model agree well with the analytical solution for a range of
particle sizes and drift velocities. Constant eddy scales and exponentially-distributed scales rep-
resent the extremes of the possibilities available in eddy interaction models. The method has
been shown to perform well for all possible combinations of these extremes. The method
described in Section 2 can therefore be expected to work for any combination of length and
time scale distributions, so long as these are chosen to give the correct integral length and time
scales.
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